42 research outputs found

    Devices and Fibers for Ultrawideband Optical Communications

    Get PDF
    Wavelength-division multiplexing (WDM) has historically enabled the increase in the capacity of optical systems by progressively populating the existing optical bandwidth of erbium-doped fiber amplifiers (EDFAs) in the C-band. Nowadays, the number of channels—needed in optical systems—is approaching the maximum capacity of standard C-band EDFAs. As a result, the industry worked on novel approaches, such as the use of multicore fibers, the extension of the available spectrum of the C-band EDFAs, and the development of transmission systems covering C- and L-bands and beyond. In the context of continuous traffic growth, ultrawideband (UWB) WDM transmission systems appear as a promising technology to leverage the bandwidth of already deployed optical fiber infrastructure and sustain the traffic demand for the years to come. Since the pioneering demonstrations of UWB transmission a few years ago, long strides have been taken toward UWB technologies. In this review article, we discuss how the most recent advances in the design and fabrication of enabling devices, such as lasers, amplifiers, optical switches, and modulators, have improved the performance of UWB systems, paving the way to turn research demonstrations into future products. In addition, we also report on the advances in UWB optical fibers, such as the recently introduced nested antiresonant nodeless fibers (NANFs), whose future implementations could potentially provide up to 300-nm-wide bandwidth at less than 0.2 dB/km loss

    Acute mesenteric ischaemia in refractory shock on veno-arterial extracorporeal membrane oxygenation

    Get PDF
    Background: Acute mesenteric ischaemia is a severe complication in critically ill patients, but has never been evaluated in patients on veno-arterial extracorporeal membrane oxygenation (V-A ECMO). This study was designed to determine the prevalence of mesenteric ischaemia in patients supported by V-A ECMO and to evaluate its risk factors, as well as to appreciate therapeutic modalities and outcome. Methods: In a retrospective single centre study (January 2013 to January 2017), all consecutive adult patients who underwent V-A ECMO were included, with exclusion of those dying in the first 24 hours. Diagnosis of mesenteric ischaemia was performed using digestive endoscopy, computed tomography scan or first-line laparotomy. Results: One hundred and fifty V-A ECMOs were implanted (65 for post-cardiotomy shock, 85 for acute cardiogenic shock, including 39 patients after refractory cardiac arrest). Overall, median age was 58 (48-69) years and mortality 56%. Acute mesenteric ischaemia was suspected in 38 patients, with a delay of four (2-7) days after ECMO implantation, and confirmed in 14 patients, that is, a prevalence of 9%. Exploratory laparotomy was performed in six out of 14 patients, the others being too unstable to undergo surgery. All patients with mesenteric ischaemia died. Independent risk factors for developing mesenteric ischaemia were renal replacement therapy (odds ratio (OR) 4.5, 95% confidence interval (CI) 1.3-15.7, p=0.02) and onset of a second shock within the first five days (OR 7.8, 95% CI 1.5-41.3, p=0.02). Conversely, early initiation of enteral nutrition was negatively associated with mesenteric ischaemia (OR 0.15, 95% CI 0.03-0.69, p=0.02). Conclusions: Acute mesenteric ischaemia is a relatively frequent but dramatic complication among patients on V-A ECMO

    Deterministic polarization chaos from a laser diode

    Full text link
    Fifty years after the invention of the laser diode and fourty years after the report of the butterfly effect - i.e. the unpredictability of deterministic chaos, it is said that a laser diode behaves like a damped nonlinear oscillator. Hence no chaos can be generated unless with additional forcing or parameter modulation. Here we report the first counter-example of a free-running laser diode generating chaos. The underlying physics is a nonlinear coupling between two elliptically polarized modes in a vertical-cavity surface-emitting laser. We identify chaos in experimental time-series and show theoretically the bifurcations leading to single- and double-scroll attractors with characteristics similar to Lorenz chaos. The reported polarization chaos resembles at first sight a noise-driven mode hopping but shows opposite statistical properties. Our findings open up new research areas that combine the high speed performances of microcavity lasers with controllable and integrated sources of optical chaos.Comment: 13 pages, 5 figure

    Mode oscillation and harmonic distortions associated with sinusoidal modulation of semiconductor lasers

    Get PDF
    This paper investigates mode dynamics, operation characteristics and signal distortions associated with sinusoidal modulation of semiconductor lasers. The study is based on intensive integrations of the multimode rate equation model of semiconductor lasers over wide ranges of the modulation frequency and depth. The rate equations take into account both spectral symmetric and asymmetric suppressions of modal gain. The higher harmonic distortions as well as the half harmonic distortion associated with the period doubling effect are investigated. The study is applied to both cases of single-mode and multimode oscillations of the non-modulated laser. The obtained results showed that the modulated signal has six distinct waveforms depending on the modulation conditions; three types have continuous periodic waveforms and the others have periodic pulsing waveforms. The modulated laser is found to oscillate in a single mode under weak modulation where the modulated signal is continuous, whereas the pulsing signals are associated with multimode oscillation. The higher harmonic distortions of single-mode laser are lower than those of two-mode lasers, and become serious at modulation frequencies around the relaxation oscillation frequency. These distortions are highest when the laser output is pulsating and the pulses are superposed by relaxation oscillations. © EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2012

    Integrated frequency comb laser with narrow intrinsic optical linewidth based on a dielectric waveguide feedback circuit

    Get PDF
    We present an integrated hybrid semiconductor-dielectric (InP-Si3_3N4_4) waveguide laser that generates frequency combs at a wavelength around 1.5 ÎĽ\mum with a record-low intrinsic optical linewidth of 34 kHz. This is achieved by extending the cavity photon lifetime using a low-loss dielectric waveguide circuit. In our experimental demonstration, the on-chip, effective optical path length of the laser cavity is extended to 6 cm. The resulting linewidth narrowing shows the high potential of on-chip, highly coherent frequency combs with direct electrical pumping, based on hybrid and heterogeneous integrated circuits making use of low-loss dielectric waveguides

    Demonstration of a self-pulsing photonic crystal Fano laser

    Get PDF
    Semiconductor lasers in use today rely on mirrors based on the reflection at a cleaved facet or Bragg reflection from a periodic stack of layers. Here, we demonstrate an ultra-small laser with a mirror based on the Fano resonance between a continuum of waveguide modes and the discrete resonance of a nanocavity. The Fano resonance leads to unique laser characteristics. Since the Fano mirror is very narrow-band compared to conventional lasers, the laser is single-mode and in particular, it can be modulated via the mirror. We show, experimentally and theoretically, that nonlinearities in the mirror may even promote the generation of a self-sustained train of pulses at gigahertz frequencies, an effect that was previously only observed in macroscopic lasers. Such a source is of interest for a number of applications within integrated photonics

    Optical terabit transmitter and receiver based on passive polymer and InP technology for high-speed optical connectivity between datacenters

    Get PDF
    We demonstrate the hybrid integration of a multi-format tunable transmitter and a coherent optical receiver based on optical polymers and InP electronics and photonics for next generation metro and core optical networks. The transmitter comprises an array of two InP Mach-Zehnder modulators (MZMs) with 42 GHz bandwidth and two passive PolyBoards at the back- and front-end of the device. The back-end PolyBoard integrates an InP gain chip, a Bragg grating and a phase section on the polymer substrate capable of 22 nm wavelength tunability inside the C-band and optical waveguides that guide the light to the inputs of the two InP MZMs. The front-end PolyBoard provides the optical waveguides for combing the In-phase and Quadrature-phase modulated signals via an integrated thermo-optic phase shifter for applying the pi/2 phase-shift at the lower arm and a 3-dB optical coupler at the output. Two InP-double heterojunction bipolar transistor (InP-DHBT) 3-bit power digital-to-analog converters (DACs) are hybridly integrated at either side of the MZM array chip in order to drive the IQ transmitter with QPSK, 16-QAM and 64-QAM encoded signals. The coherent receiver is based on the other side on a PolyBoard, which integrates an InP gain chip and a monolithic Bragg grating for the formation of the local oscillator laser, and a monolithic 90° optical hybrid. This PolyBoard is further integrated with a 4-fold InP photodiode array chip with more than 80 GHz bandwidth and two high-speed InP-DHBT transimpedance amplifiers (TIAs) with automatic gain control. The transmitter and the receiver have been experimentally evaluated at 25Gbaud over 100 km for mQAM modulation showing bit-error-rate (BER) performance performance below FEC limit

    Coherent transponder for optical PS-QPSK signals

    No full text
    The present document relates to optical transmission systems. In particular, the present document relates to a transmitter and/or a receiver for optical polarization switches (PS) QPSK (quadrature phase shift keying) signals. An apparatus (500) for an optical transmitter of an optical polarization switched M-PSK signal comprising a first and a second polarization, with M = 2m and m≥ 1 is described. The apparatus (500) comprises mapping means (200) configured to map, at a time instant k=1,...,K, m information bits to an M-PSK constellation point, thereby generating a first symbol at time instant k for the first polarization; assign, at the time instant k, one further information bit by generating a second symbol at time instant k for the second polarization, wherein the second symbol at time instant k corresponds to the first symbol at time instant k, or corresponds to the constellation point opposite the constellation point of the first symbol at time instant k; and repeat the mapping and assigning steps for all k=1,...,K to generate a sequence of first and second symbols for the first and second polarization, respectively. The apparatus (500) further comprises decorrelation means (501, 502) configured to decorrelate the first symbol at time instant k and the second symbol at time instant k, for all k=1,...,K
    corecore